Frequency Control of an RF System

LLRF \& HLRF

- Low Level RF (LLRF) is concerned with the frequency control and the amplitude control of the RF waveform that is used to accelerate charge particles.
- Some people restrict LLRF to the realm of frequency control
- and designate High Level RF (HLRF) for amplitude control.
- Before the advent of numerically controlled oscillators (NCO) or direct digital synthesizers (DDS), most RF systems used voltage controlled oscillators(VCO) for phase continuous frequency control

Frequency Sources

- VCOs can be very tempermental devices requiring great care in component choices, temperature stabilization, and feedback control.
- With NCOs and DDSs, the devices are so stable, the trend for many RF systems is to operate "open loop".
- However, for high intensity accelerators, LLRF systems need to incorporate feed back systems for beam stability.
- A LLRF system using DDS technology can be constructed in an FPGA but the function is still analogous to an analog VCO circuit.

Complete RF System

Phase focusing

Above transition higher energy particles, take a longer time to go around the ring than lower energy particles.

Change in revolution frequency for a change in beam energy

$$
\begin{gathered}
\frac{\Delta T_{r}}{T_{r}}=\frac{\eta}{\beta^{2}} \frac{\Delta E}{E_{0}} \\
\Delta Q=-\frac{2 \pi h}{T_{r}} \Delta T_{r} \quad \frac{\Delta Q}{\Delta n}=-2 \pi h \frac{\eta}{\beta^{2}} \frac{\Delta E}{E_{0}} \\
\frac{d Q}{d t}=-\omega_{R+\frac{\eta}{B^{2}} \frac{\Delta E}{E_{0}}}
\end{gathered}
$$

Change in beam energy for a change in RF phase

$$
\begin{gathered}
\Delta E=q V \sin \varphi \approx q V \varphi \\
\frac{d \Delta E}{d t}=q V \varphi=\frac{\omega_{R}}{2 \pi h} q V \varphi \\
\frac{d^{2} \varphi}{d t^{2}}=-\omega_{R+\frac{\eta}{\beta^{2}}} \frac{d}{d t} \frac{\Delta E}{E_{0}}
\end{gathered}
$$

Beam Phase Transfer Function
$\frac{d^{2} \phi}{d t^{2}}+\omega_{s}^{2} \varphi=0 \quad \omega_{s}^{2}=\frac{\omega_{c}^{2}}{2 \pi h} \frac{n}{\beta^{2}} \frac{e V}{E_{0}}$
$\begin{gathered}\text { characteristic } \\ \text { equation }\end{gathered} \quad s^{2} \varphi+\omega_{s}^{2} \varphi=0$

$$
B(s)=\frac{\omega_{s}{ }^{2}}{s^{2}+\omega_{s}{ }^{2}} \quad \begin{aligned}
& \text { undamped } \\
& \text { oscillator }
\end{aligned}
$$

Phase-locked RF System

Phase-locked RF System Response

$$
\begin{array}{cc}
\begin{array}{l}
\varphi_{e}=\varphi_{v}-B(s) \varphi_{v} \\
\varphi_{v}=F(s)\left(\varphi_{e}+\varphi_{i}\right) \\
\\
\frac{\varphi_{e}}{\varphi_{i}}=\frac{F(s) s^{2}}{s^{2}+\omega_{s}^{2}+F(s) s^{2}} \\
\\
F(s)=\frac{F_{0}}{s} \quad \frac{Q_{e}}{\varphi_{i}}=\frac{F_{0} s}{s^{2}+F_{0} s+\omega_{s}^{2}} \quad \begin{array}{c}
\text { Dame detector } \\
\text { rasped } \\
\text { response }
\end{array} \\
\hline
\end{array}
\end{array}
$$

Cavity RLC Model

$$
\text { Cavity loss } \quad \Rightarrow R
$$

Stored magnetic energy $\Rightarrow L$
Stored electric energy $\Rightarrow C$

$$
\frac{1}{2}=\frac{1}{R}+\frac{1}{s L}+s C
$$

Cavity RLC Model
Let $\omega_{0}=\frac{1}{L C} \quad \frac{R}{Q}=\sqrt{\frac{L}{C}}$

$$
\begin{gathered}
Z=\frac{s \omega_{0} R / Q}{s^{2}+\frac{\omega_{0} s}{Q}+\omega_{0}^{2}} \\
Z=R \cos \varphi e^{1 \varphi} \quad \tan \phi=\frac{\omega_{0}^{2}-\omega^{2}}{\frac{\frac{\omega \omega_{0}}{Q}}{Q}}
\end{gathered}
$$

Cavity Phasors

$$
\begin{aligned}
& \vec{V}=\vec{Z}\left(\overrightarrow{I_{g}}+\overrightarrow{I_{b}}\right) \\
& \vec{Z}=R \cos \varphi e^{s \varphi} \\
& V=R \cos \varphi\left(I_{g} \cos \varphi-I_{b} \sin \varphi\right) \quad \text { Real Part } \\
& O=I_{g} \sin \varphi+I_{b} \cos \varphi \\
& \tan \varphi=-\frac{I_{b}}{I_{g}} \quad V=I_{g} R
\end{aligned}
$$

In the presence of beam current, the cavity must be detuned so as to present a real load to the generator. Above transition the cavity looks capacitive to the beam. i.e the voltage lags the beam current.

This also "assists" phase focusing which keeps the beam Robinson stable

3rd Harmonic Bunch Lengthening

- For light sources, synchrotron radiation will provide a natural damping term.
- If all the cavities are detuned for power match and hence, are Robinson stable, there is no need for a phase loop.
- However, for light sources, low energy spread in the beam is very desireable
- For high frequency single harmonic RF systems, electrons in a bunch will clump together at the synchronous phase resulting in short bunches with large energy spread

3rd Harmonic RF

- At Max IV, a relatively low RF frequency (100 MHz) was chosen.
- The bunches are lengthened by the additon of 3rd harmonic cavities $(300 \mathrm{MHz})$ providing a flat potential for the electrons.
- The 3rd harmonic cavities are passive and are detuned so that the beam wake provides the field in the cavities. However, this results in the 3rd harmonic cavites being tuned to Robinson unstable!

3rd Harmonic RF

- Fundamental - 3rd Harmonic - Sum

AC Coupled Phase Loop

An AC coupled phase loop can be easily added to an existing RF system

$$
Q_{e}=\frac{1-B}{1+B D} Q_{A F}=\frac{s^{2}}{s^{2}+\omega_{s}^{2}+D \omega_{2}^{2}} Q_{R F}
$$

Let $D(s)=D_{0} s \quad$ (derivative)

$$
Q_{e}=\frac{s^{2}}{s^{2}+D_{0} \omega_{s}^{2} s+\omega_{s}^{2}}
$$

Critically damped for

$$
D_{0}=2 / \omega_{s}
$$

Practical AC Coupled Phase Loop

- Situation 1 and situation 2 have the same phase but require different energy corrections.
- However for Situation 1, the phase is increasing. For Situation 2, the phase is decreasing.
- Taking the time derivative of phase distinguishes the different situations.

Analog High Pass Filter Derivative

$$
\frac{V_{0}}{V_{i}}=\frac{s / \Delta \omega_{0}}{1+s / \Delta \omega_{0}}
$$

Acts as a derivative for

$$
\omega<\Delta \omega_{0}
$$

MGKN RF

Digital Notch Filter Derivative

AC Phase Loop Implementation

System Configuration

AC Phase Loop Control

