

Introduction to RF for Particle Accelerators Part 3: Beam Signals

Dave McGinnis

- Single Bunch in a Circular Ring
 - Fourier Series
 - Fourier Transforms
 - Delta functions
 - Power Spectral Density
 - Bunch Length Monitor
- M Equally Spaced Bunches in a Ring
- A Burst of Bunches in a Ring
- Betatron Motion
 - > AM Modulation
- Longitudinal Motion
 - > Bessel Function Magic
 - Frequency Modulation
- Multipole Distributions

Introduction to RF - Part 3 - Beam Signals - McGinnis

Fourier Series

$$i_{b}(t) = \sum_{n = -\infty}^{\infty} q N_{b} f(t - nT_{rev})$$

This is a periodic series which can be expanded in a Fourier series

$$i_b(t) = \sum_{m=-\infty}^{\infty} C_m e^{jm\omega_{rev}t}$$

where

$$\omega_{\rm rev} = \frac{2\pi}{T_{\rm rev}}$$

Fourier Series

$$C_{m} = \frac{qN_{b}}{T_{rev}} \int_{-T_{rev}/2}^{T_{rev}/2} f(\tau) e^{-jm\omega_{rev}\tau} d\tau$$

Note:

 C_{o} is the DC beam Current

$$C_0 = \frac{qN_b}{T_{rev}}$$

f(t) is a real function

$$C_m = C_m^*$$

Fourier Transforms

Fourier Transform

$$\mathbf{i}(\mathbf{t}) = \int_{-\infty}^{\infty} \widetilde{\mathbf{I}}(2\pi \mathbf{f}) \mathbf{e}^{\mathbf{j}2\pi\mathbf{f}\mathbf{t}} d\mathbf{f} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{\mathbf{I}}(\omega) \mathbf{e}^{\mathbf{j}\omega\mathbf{t}} d\omega$$

Inverse Fourier Transform

$$\widetilde{I}(\omega) = \int_{-\infty}^{\infty} i(\tau) e^{-j\omega\tau} d\tau$$

Detour on Delta functions

$$i(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{I}(\omega) e^{j\omega t} d\omega$$
$$i(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{-\infty} i(\tau) e^{-j\omega \tau} d\tau \right) e^{j\omega t} d\omega$$
$$i(t) = \int_{-\infty}^{\infty} i(\tau) \left(\frac{1}{2\pi} \int_{-\infty}^{-\infty} e^{j\omega(t-\tau)} d\omega \right) d\tau$$

$$\delta(t-\tau) = \frac{1}{2\pi} \int_{-\infty}^{-\infty} e^{j\omega(t-\tau)} d\omega$$

Fourier Transform of the Beam Current

EUROPEAN SPALLATION

SOURCE

$$\widetilde{\mathbf{I}}_{b}(\omega) = \int_{-\infty}^{\infty} i_{b}(\tau) e^{-j\omega\tau} d\tau$$
$$i_{b}(t) = \sum_{m=-\infty}^{\infty} C_{m} e^{jm\omega} revt$$

$$\widetilde{\mathbf{I}}_{\mathbf{b}}(\boldsymbol{\omega}) = 2\pi \sum_{m=-\infty}^{\infty} C_m \delta(\boldsymbol{\omega} - \boldsymbol{\omega}_{\text{rev}})$$

Fourier Transform of the Beam Current

But spectrum analyzers do not measure currents and voltages. They measure POWER deposited into a filter of width df

The total power into the spectrum analyzer

$$\langle \mathbf{p}(\mathbf{t}) \rangle = \int_{-\infty}^{\infty} \mathbf{S}(2\pi \mathbf{f}) d\mathbf{f}$$

S($2\pi f$) is the power spectral density and is the power measured by the spectrum analyzer in a resolution bandwidth of 1 Hz

Fourier Transform of the Beam Current

Time Averaged Power

$$\langle p(t) \rangle = \lim_{T \to \infty} \frac{1}{T} R \int_{-T/2}^{T/2} i(t) \cdot i(t) dt$$

Since:

$$\mathbf{i}(\mathbf{t}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{\mathbf{I}}(\omega) \mathbf{e}^{\mathbf{j}\omega \mathbf{t}} d\omega$$

and i(t) is real

$$\mathbf{i}(\mathbf{t}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathbf{\tilde{I}}^*(\omega) \mathbf{e}^{-j\omega \mathbf{t}} d\omega$$

Power Spectral Density

$$\left\langle \mathbf{p}(\mathbf{t})\right\rangle = \lim_{T \to \infty} \frac{1}{T} R \int_{-T/2}^{T/2} \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{\mathbf{I}}(\omega_1) e^{j\omega_1 t} d\omega_1 \right) \cdot \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{\mathbf{I}}^*(\omega_2) e^{-j\omega_2 t} d\omega_2 \right) dt$$

Twizzle, Twazzle....

$$\langle \mathbf{p}(\mathbf{t}) \rangle = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{T} |\mathbf{\tilde{I}}(\omega)|^2 \mathbf{R} \frac{d\omega}{2\pi}$$

$$S(\omega) = \lim_{T \to \infty} \frac{1}{T} |\tilde{I}(\omega)|^2 R$$

Beam Power Spectrum

$$\widetilde{I}_{b}(\omega) = 2\pi \sum_{m=-\infty}^{\infty} C_{m} \delta(\omega - \omega_{rev})$$
$$S_{b}(\omega) = \lim_{T \to \infty} \frac{R}{T} (2\pi)^{2} \sum_{m=-\infty}^{\infty} \sum_{m'=-\infty}^{\infty} C_{m} C_{m'}^{*} \delta(\omega - m\omega_{rev}) \delta(\omega - m'\omega_{rev})$$

Since delta functions do not overlap for $m \neq m'$

$$S_{b}(\omega) = \lim_{T \to \infty} \frac{R}{T} (2\pi)^{2} \sum_{m = -\infty}^{\infty} |C_{m}|^{2} (\delta(\omega - m\omega_{rev}))^{2}$$

Some more delta function magic...

$$\begin{split} \lim_{T \to \infty} \frac{1}{T} (\delta(\omega - m\omega_{rev}))^2 &= \lim_{T \to \infty} \frac{1}{T} \delta(\omega - m\omega_{rev}) \frac{1}{2\pi} \int_{-T/2}^{T/2} e^{j(\omega - m\omega_{rev})t} dt \\ &= \frac{1}{2\pi} \delta(\omega - m\omega_{rev}) \\ S_b(\omega) &= 2\pi R \sum_{m=-\infty}^{\infty} |C_m|^2 \delta(\omega - m\omega_{rev}) \\ S_b(f) &= R \sum_{m=-\infty}^{\infty} |C_m|^2 \delta(f - mf_{rev}) \end{split}$$

Beam Power Spectrum

Since spectrum analyzers can't distinguish between negative and positive frequencies:

$$S_{b}(f) = \left(\frac{qN_{b}}{T_{rev}}\right)^{2} R\delta(0) + 2R \sum_{m=1}^{\infty} |C_{m}|^{2} \delta(f - mf_{rev})$$

$$S_{b}(f) = \frac{2R|C_{1}|^{2}}{R|C_{0}|^{2}} = \frac{2R|C_{2}|^{2}}{2R|C_{2}|^{2}} = \frac{2R|C_{3}|^{2}}{2R|C_{4}|^{2}}$$

$$f_{rev} = 2f_{rev} = 3f_{rev} = 4f_{rev} = Freq.$$

Beam Power Spectrum

The power contained in each revolution line: $- (qN_b)^2$

$$P_0 = R \left(\frac{q r_0}{T_{rev}} \right)$$
$$P_m = 2R \left| C_m \right|^2$$

m = 0

m > 0

Note that if:

Bunch Length Monitor

The power in spectral line m:

EUROPEAN SPALLATION

SOURCE

$$P_{m} = 2P_{0}Sa\left(m\pi\frac{\tau_{b}}{T_{rev}}\right)$$
$$Sa(x) = \frac{sin(x)}{x}$$

Bunch Length Monitor

The ratio of the power in line n to the power in line m is independent of the beam intensity and is a function of the bunch length.

EUROPEAN SPALLATION

SOURCE

$$i_{b}(t) = \sum_{n = -\infty}^{\infty} q N_{b} f\left(t - n \frac{T_{rev}}{M}\right)$$

M Equally Spaced Bunches in a Ring

$$i_b(t) = \sum_{m=-\infty}^{\infty} C_m e^{jm(M\omega_{rev})t}$$

$$C_{m} = \frac{qN_{b}}{T_{rev}} \int_{M}^{T_{rev}/2} f(\tau) e^{-jm(M\omega_{rev})\tau} d\tau$$

Note that all the coefficients are M times bigger than for a single bunch. More bunches – more power. For Example:

$$C_0 = M \frac{qN_b}{T_{rev}}$$

Which is still the total DC current in the ring

M Equally Spaced Bunches in a Ring

A Burst of Bunches in a Ring

A Burst of Bunches in a Ring

A Burst of Bunches in a Ring

Betatron Motion

Betatron Motion

Image current collected on the pickup plates

$$I_{U} = \frac{I_{b}}{2} \left(1 + \frac{2y}{d} \right) \qquad I_{L} = \frac{I_{b}}{2} \left(1 - \frac{2y}{d} \right)$$
$$V_{\Delta} = \frac{Z_{o}}{\sqrt{2}} \left(I_{U} - I_{L} \right) = \sqrt{2} I_{b} Z_{o} \frac{y}{d}$$

Ideal power combiner -

For a single particle in the ring:

$$i_{p}(t) = q \sum_{n=-\infty}^{\infty} \delta(t - nT_{rev})$$
$$= \frac{q}{T_{rev}} \sum_{n=-\infty}^{\infty} e^{jn\omega_{rev}t}$$

For a particle going through betatron oscillations

$$y = y_{co} + y_{\beta} \cos(Q\omega_{rev}t + \phi_{\beta})$$

where Q is the tune ϕ_β is the starting phase of the betatron oscillation y_{co} is the closed orbit position

$$V_{\Delta} = \sqrt{2}Z_{o}\frac{q}{T_{rev}}\sum_{n=-\infty}^{\infty} \left(\frac{y_{co}}{d}e^{jn\omega_{rev}t} + \frac{y_{\beta}}{d}e^{jn\omega_{rev}t}\cos(Q\omega_{rev}t + \phi_{\beta})\right)$$
$$e^{jn\omega_{rev}t}\cos(Q\omega_{rev}t + \phi_{\beta}) = \frac{1}{2}e^{j\phi\beta}e^{j(n+Q)\omega_{rev}t} + \frac{1}{2}e^{-j\phi\beta}e^{j(n-Q)\omega_{rev}t}$$

Betatron Oscillations

$$\begin{split} S(f) &= 2 \left(\frac{q}{T_{rev}}\right)^2 Z_o \left(\frac{y_{co}}{d}\right)^2 \sum_{n=-\infty}^{\infty} \delta(f - nf_{rev}) \\ &+ \frac{1}{2} \left(\frac{q}{T_{rev}}\right)^2 Z_o \left(\frac{y_{\beta}}{d}\right)^2 \sum_{n=-\infty}^{\infty} \delta(f - (n - Q)f_{rev}) \\ &+ \frac{1}{2} \left(\frac{q}{T_{rev}}\right)^2 Z_o \left(\frac{y_{\beta}}{d}\right)^2 \sum_{n=-\infty}^{\infty} \delta(f - (n + Q)f_{rev}) \end{split}$$

Betatron Oscillations

EUROPEAN SPALLATION

SOURCE

From one pickup, you cannot distinguish the integer part of the tune.

You also cannot tell if the tune is greater or less than 0.5

AM Modulation

Betatron oscillations has the same spectrum as Amplitude Modulation (AM)

$$v(t) = V_o(1 + m\cos(\omega_m t))\cos(\omega_c t)$$

 ω_m is the modulation frequency ω_c is the carrier frequency m is the modulation amplitude

Using the trig identity

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

$$\mathbf{v}(t) = \mathbf{V}_{o}\cos(\omega_{c}t) + \frac{\mathbf{m}\mathbf{V}_{o}}{2}\cos((\omega_{c} + \omega_{m})t) + \frac{\mathbf{m}\mathbf{V}_{o}}{2}\cos((\omega_{c} - \omega_{m})t)$$

AM Modulation

$$v(t) = V_{o}(1 + m\cos(\omega_{m}t))\cos(\omega_{c}t)$$

$$v(t) = V_{o}\cos(\omega_{c}t) + \frac{mV_{o}}{2}\cos((\omega_{c} + \omega_{m})t) + \frac{mV_{o}}{2}\cos((\omega_{c} - \omega_{m})t)$$

$$m^{2}/4 \qquad f_{m} \qquad f_{m} \qquad f_{m} \qquad Freq.$$

Longitudinal Motion

A single particle undergoes synchrotron oscillations ϕ_{s}

Longitudinal Motion

The particle's longitudinal position can be described by an azimuthal phase around the ring. The particle traverses 2π radians in one trip around the ring.

$$i_p(\phi) = q\omega_{rev} \sum_{n=-\infty}^{\infty} \delta(\phi - 2n\pi)$$

This is a periodic function which can be expanded in a Fourier series:

$$i_{p}(\phi) = \frac{q}{T_{rev}} \sum_{n=-\infty}^{\infty} e^{jn\phi}$$

Longitudinal Motion

But the longitudinal phase is a function of time which includes the time dependence of synchrotron oscillations

$$\varphi = \omega_{\text{rev}} t + \varphi_{\text{s}} \sin(\Omega_{\text{s}} t + \alpha_{\text{s}})$$

Where ϕ_s is the synchrotron oscillation amplitude, Ω_s is the synchrotron frequency α_s is the starting synchrotron phase

$$i_{p}(t) = \frac{q}{T_{rev}} \sum_{n=-\infty}^{\infty} e^{jn\omega_{rev}t} e^{jn\phi_{s}} \sin(\Omega_{s}t + \alpha_{s})$$

Bessel Function Magic

The complex exponential of a sine function can be "simplified" by using Bessel functions

$$e^{jz\sin(x)} = \sum_{m=-\infty}^{\infty} J_m(z)e^{jmx}$$

Introduction to RF - Part 3 - Beam Signals - McGinnis

Longitudinal Spectrum

Frequency Modulation

Longitudinal oscillations has the same spectrum as frequency or phase modulation (FM or PM)

$$\omega = \omega_{c} + \omega_{m} \cos(\omega_{s}t)$$

$$\omega_{s} \text{ is the modulation frequency}$$

$$\omega_{c} \text{ is the carrier frequency}$$

$$\omega_{m} \text{ is the modulation amplitude}$$

$$\frac{d\phi}{dt} = \omega$$

$$\phi = \omega_{c}t + \frac{\omega_{m}}{\omega_{s}} \sin(\omega_{s}t)$$

EUROPEAN SPALLATION

SOURCE

The current for a single particle with synchrotron amplitude ϕ_{s} and phase α_{s} is:

$$i_{p}(\varphi_{s},\alpha_{s},t) = \frac{q}{T_{rev}} \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} J_{m}(n\varphi_{s}) e^{jm\alpha_{s}} e^{j(n\omega_{rev}+m\Omega_{s})t}$$

What about a collection of particles in longitudinal phase space.

Each particle has a polar phase space coordinates radius r, angle α

The density in phase space must be periodic in α with a period of 2π

$$\psi(\mathbf{r}, \alpha) = f(\mathbf{r}) \sum_{k=-\infty}^{\infty} c_k e^{jk\alpha}$$

The number of particles in phase space is given by:

$$N_p = c_0 \int_0^\infty f(r) 2\pi r dr$$

Also since $\psi(\mathbf{r}, \alpha)$ must be real:

$$c_k = c_{-k}^*$$

The different values of k are multipoles. The multipoles spin around the origin at a the synchrotron frequency.

EUROPEAN SPALLATION

SOURCE

Introduction to RF - Part 3 - Beam Signals - McGinnis

EUROPEAN SPALLATION

SOURCE

Introduction to RF - Part 3 - Beam Signals - McGinnis

The total current is found by integrating the contribution of each particle in phase space.

$$i_{b}(t) = \int_{0}^{\infty} r dr \int_{0}^{2\pi} \psi(r, \alpha) i_{p}(r, \alpha, t) d\alpha$$
$$i_{b}(t) = q\omega_{rev} \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} F_{k}(n) c_{k} e^{j(n\omega_{rev} + k\Omega_{s})t}$$

Where $F_k(n)$ is a frequency form factor

$$F_k(n) = \int_0^\infty J_k(nr)f(r)rdr$$

Each synchrotron line in the spectrum corresponds to a different multipole mode oscillation

