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Beam Signals Outline 

 Single Bunch in a Circular Ring 
 Fourier Series 
 Fourier Transforms 
 Delta functions 
 Power Spectral Density 
 Bunch Length Monitor 

 M Equally Spaced Bunches in a Ring 
 A Burst of Bunches in a Ring 
 Betatron Motion 

 AM Modulation 

 Longitudinal Motion 
 Bessel Function Magic 
 Frequency Modulation 

 Multipole Distributions 
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Single Bunch in a Circular Ring 
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Fourier Series 
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This is a periodic series which can be expanded in a Fourier series 
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Fourier Series 
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Co is the DC beam Current 

f(t) is a real function 
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Fourier Transforms 
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Fourier Transform 
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Detour on Delta functions 
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Fourier Transform of the Beam Current 
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Fourier Transform of the Beam Current 

But spectrum analyzers do not measure currents and voltages. 

They measure POWER deposited into a filter of width df 

   




 dff2Stp

The total power into the spectrum analyzer 

S(2f) is the power spectral density and is the power measured 
by the spectrum analyzer in a resolution bandwidth of 1 Hz 
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Fourier Transform of the Beam Current 

Time Averaged Power   
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Power Spectral Density 
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Beam Power Spectrum 
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Beam Power Spectrum 

Some more delta function magic… 
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Beam Power Spectrum 

Since spectrum analyzers can’t distinguish between negative 
and positive frequencies: 
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Beam Power Spectrum 

The power contained in each revolution line: 
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Bunch Length Monitor 

Consider a square bunch with length b 

b 
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The power in spectral line m: 
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Bunch Length Monitor 

The ratio of the power in line n to the power in line m is 
independent of the beam intensity and is a function of the 
bunch length. 
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M Equally Spaced Bunches in a Ring 

Resistive Wall 
Monitor 
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This looks exactly like 1 
bunch in a machine M times 
smaller 
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M Equally Spaced Bunches in a Ring 
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Note that all the coefficients are M times bigger than for a 
single bunch. More bunches – more power.  
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Which is still the total DC current in the ring 
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M Equally Spaced Bunches in a Ring 
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A Burst of Bunches in a Ring 
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A Burst of Bunches in a Ring 
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A Burst of Bunches in a Ring 
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Betatron Motion 
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Betatron Motion 

Image current collected on the pickup plates 
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Ideal power combiner 

For a single particle in the ring: 
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Betatron Motion 

For a particle going through betatron oscillations 

   tQcosyyy revco

where  Q is the tune 
  is the starting phase of the betatron oscillation 
 yco is the closed orbit position  
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Betatron Oscillations 
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Betatron Oscillations 

frev 2frev 3frev 

Freq. 

n+Q  line for fract Q < 0.5 
n+1-Q  line for fract Q > 0.5 

n-Q  line for fract Q < 0.5 
n-1+Q  line for fract Q > 0.5 

From one pickup, you cannot distinguish the integer part of the 
tune.  
You also cannot tell if the tune is greater or less than 0.5 
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AM Modulation 

Betatron oscillations has the same spectrum as Amplitude 
Modulation (AM) 

      tcostcosm1Vtv cmo 

m is the modulation frequency 
c is the carrier frequency 
m is the modulation amplitude 

Using the trig identity 
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AM Modulation 
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Longitudinal Motion 

A single particle undergoes synchrotron oscillations s 

b

s
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Longitudinal Motion 

The particle’s longitudinal position can be described by an 
azimuthal phase around the ring. The particle traverses 2 
radians in one trip around the ring. 
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This is a periodic function which can be expanded in a Fourier 
series: 
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Longitudinal Motion 

But the longitudinal phase is a function of time which includes 
the time dependence of synchrotron oscillations 

 sssrev tsint 

Where s is the synchrotron oscillation amplitude, 
 s is the synchrotron frequency 
 s is the starting synchrotron phase 
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Bessel Function Magic 

The complex exponential of a sine function can be “simplified” 
by using Bessel functions 
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Longitudinal Spectrum 
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Frequency Modulation 

Longitudinal oscillations has the same spectrum as frequency or 
phase modulation (FM or PM) 

 tcos smc 

s is the modulation frequency 
c is the carrier frequency 
m is the modulation amplitude 
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Frequency Modulation 
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Multipole Distributions 
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The current for a single particle with synchrotron amplitude s 
and phase s is: 

What about a collection of particles in longitudinal phase space. 
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Each particle has a polar phase 
space coordinates radius r, 
angle  
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Multipole Distributions 

The density in phase space must be periodic in  with a period 
of 2 
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The number of particles in phase space is given by: 
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Multipole Distributions 

The different values of k are multipoles. The multipoles spin 
around the origin at a the synchrotron frequency. 

Monopole:     k = 0  

Dipole:          k = 1  

Quadrupole: k = 2  
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Multipole Distributions 

Monopole:     k = 0  

Dipole:          k = 1  

Time projection  
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Multipole Distributions 

Monopole:     k = 0  

Quadrupole:  k = 2  

Time projection  
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Multipole Distributions 

The total current is found by integrating the contribution of 
each particle in phase space. 
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Where Fk(n) is a frequency form factor 
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Multipole Distributions 

Each synchrotron line in the spectrum corresponds to a 
different multipole mode oscillation 
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