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Qiﬁﬁ&?“ Beam Signals Outline

= Single Bunch in a Circular Ring
> Fourier Series
» Fourier Transforms
> Delta functions
» Power Spectral Density
» Bunch Length Monitor

= M Equally Spaced Bunches in a Ring
A Burst of Bunches in a Ring

= Betatron Motion
» AM Modulation

= Longitudinal Motion
> Bessel Function Magic
» Frequency Modulation

= Multipole Distributions
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33'3??“9”" Single Bunch in a Circular Ring

N, particles in
a bunch
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= Tre
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Time

Bunch shape = f(t) where jf(t)jt =1

ib(t): inbf(t_nTrev)

N=—00
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Qiﬁﬁ&?“ Fourier Series

ib(t): ZqNbf(t_ nTrev)
N=-—00

This is a periodic series which can be expanded in a Fourier series

o0 :
()= 3 Cpel ™!

M =—00
where
2T

WOrey = —T
rev
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Qiﬁﬁb&fm Fourier Series

N Trev/2 _
e =Moo oty

"V —Trey /2

Note:
C, is the DC beam Current

f(1) is a real function
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ngw Fourier Transforms

Fourier Transform

i(t)= jT(znf)ejz"“df=2—ln [T(w)do

Inverse Fourier Transform

(o) = Ti(t)e_jmrdr

—00
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ssssss Detour on Delta functions
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33**“9”" Fourier Transform of the Beam Current

Tolo)= [ip(re

o0 -
()= 3 Crel™re

M =—00
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333??“9'“ Fourier Transform of the Beam Current

But spectrum analyzers do not measure currents and voltages.
They measure POWER deposited into a filter of width df

The total power into the spectrum analyzer
o0

(p(t)) = |S(2nf )of
—00

S(2nf) is the power spectral density and is the power measured
by the spectrum analyzer in a resolution bandwidth of 1 Hz
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ssssss Fourier Transform of the Beam Current

1 T/2
Time Averaged Power <p(t)> — lim =R j i(t)-i(t)dt
T—o0
~-T/2
Since:
AN o~ joot
(03, (TR
and i(t) is real
()= [T (ol do
2T i
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ssssss Power Spectral Density

<p(t)>= lim %R j {2—171 O_‘?T(@l)ejwltd(,)l].{z_tt TT*(O)z)ejwztdmZ]dt

—00

Twizzle, Twazzle....

()= [ tim Lfiw)?R

Toow I 2T
—0

. 1~ 2
Slw)= Iim —|I R
(O)) TinooT ((D)(
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e Beam Power Spectrum
Tb ((D) =27 Z CmS(OD — Orey )

Sp(@)= 1im R 212 33 CruCrydler— Mooy I~ Mo )

Tooo I M=—00 M'=—0
Since delta functions do not overlap formz m’

Sp (@ )_Tlin _(27t Z‘Cm‘ (((")_m@rev))2

Introduction to RF - Part 3 - Beam Signals - McGinnis 12



aiﬁﬁﬁ 11111 Beam Power Spectrum

Some more delta function magic...

1 1 1 T/2
Too T Too I T T/2
1
o 6(03 — M®ygy )
7T

Sp(@)=21R 3 |Cm|*8(c>—Maoyey )

M=—00

Sb(f): R Z‘Cm‘ZS(f ~ mfrev)

M =—00
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333??"9'“ Beam Power Spectrum

Since spectrum analyzers can't distinguish between negative
and positive frequencies:

Sy ()= (W_bjst(o)+ 2R i\cm\zs(f —mf g, )

Trev m=1
S (f) 2RIC[*  2R|C,*  2R[C4f 2R|C,4|*
R[Colf ‘ | | '
fr‘ev 2fr‘ev 3‘Fr'ev 4fr‘6V Fr.eq'
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SSSSSS Beam Power Spectrum

The power contained in each revolution liae:

pO:R[qN_bJ n=0

Trev
2 m>0
Pm = ZR‘Cm‘
Note that if:
Short Bunch Long Bunch
f(t)=5(t) f(t)=——(L+cos(2nf ey t))
N 2 rev
Py = 2R| 0 1 (N Y
Trev P]_ =—R
2\ Trey

Pn =0 m > 1
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e Bunch Length Monitor

Consider a square bunch with length t,

[l/tb

The power in spectral line m:

Pm = 2P08a[mrc T—b]

Trev

Sa(x) = sinx(x)
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335*“5"’" Bunch Length Monitor

The ratio of the power in line n to the power in line m is
independent of the beam intensity and is a function of the
bunch length.

o 1

~N
OO‘:’ 0.75
T S 0757

Sa| nmt—0-| B
Pn _ Trev g 0.5
P T T |
m Sal mm b 0.25

Trev

0 0.15 0.3
Fractional Bunch Length

L ______________________________________________________________________________________________________________________________________________|
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SPALLATION

Q::Ezm M Equally Spaced Bunches in a Ring

T N, particles in
a bunch
1 Trev
Resistive Wall M
Monitor

Current

Tifne
This looks exactly like 1
bunch in a machine M times

smaller
Ib(t)z Z CINbf t—n Ii(jlv
N=-—00
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333??"9'“ M Equally Spaced Bunches in a Ring

ib(t) _ icmejm(M(Drev )t

M =—00
Trev /2 _
Cm _ TqNb J‘ f(T)e—Jm(M(Drev )Td
rev M _Trev /2

Note that all the coefficients are M times bigger than for a
single bunch. More bunches - more power.
For Example:

Co=MINb
TreV

Which is still the total DC current in the ring
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Current

Current

333??"3”" M Equally Spaced Bunches in a Ring

ﬂ ﬂ
Ju_ )\ JHJHHI
Time Freq.

—

rev

WAUAWAWAWAW)

Fregq.
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aiﬁﬁ#‘s’m A Burst of Bunches in a Ring

M bunches
separated by
T.../h

Resistive Wall
Monitor

Current

UV J U U

Time
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A Burst of Bunches in a Ring

N

o £
5 ”“QA ”“QA UUUUUUUU_UUUUUUUU
E Time
3 = 8 X
i(1)=A(t)XB(1)

Time
L ______________________________________________________________________________________________________________________________________________|
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Trev /2 .
f(l.)e—Jm(h(Drev )Td’l?

e A Burst of Bunches in a Ring
At)= S c.eim(Morey )t Cp =h 0
- Z me "V —Trev /12
M=—o0
w -
_M Z S M7 ) jnoreyt
h © h
N=—00
M & < NMTC | jorey (Mmh+n)t
i rev
= >y CmSa( je
M=—00 N=—00
b
h=20 |
M=4
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i .

Introduction to RF - Part 3 - Beam Signals - McGinnis

23



EUROPEAN

aii’)ﬁ%&“é‘“ Betatron Motion
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333* 22222 Betatron Motion

Ib 2y Ib 2yj
Iy =21+ I, =-B|1-2Y
v 2(+dj L 2( d
/
VA=TZ(|U—|L)=\E|bZoX

Ideal power combiner

For a single particle in the ring:

ip(t):q is(t_n-rrev)

o0

9 Jnoypeyt
=— Ye
LRSS
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335??“3'“ Betatron Motion

For a particle going through betatron oscillations

Y=Yco TYp COS(Q(Drevt +dg )

where Q is the tune
¢g is The starting phase of the betatron oscillation
Yo IS The closed orbit position

Vy =272, > (yﬂ eNOrev! +%ej“®'ﬂwt cos(erth+<|>B ))

eMrev! cos(Quey t + (I’B): %ej% eln+Qloreyt | 1 6108 oj(1-Qloreyt
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ssssss Betatron Oscillations

Trev d ) .
2 2
19 YB| S s(f—(n—
+2[Trevj Zo( dj nzz_:j(f (n Q)frev)
2 2
109 B _
+2[Trev) Zo( q ] nzz_lf(f (n"‘Q)frev)
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SPALLATION

Betatron Oscillations

ttltt 1l t1 ] Fe
f 2f 3f

rev rev rev

n-Q  line for fract Q < 0.5 n+Q line for fract Q < 0.5
n-1+Q line for fract Q > 0.5 n+1-Q line for fract Q > 0.5

From one pickup, you cannot distinguish the integer part of the

Tune.
You also cannot tell if the tune is greater or less than 0.5
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333?? 11111 AM Modulation

Betatron oscillations has the same spectrum as Amplitude
Modulation (AM)

v(t) =V, (1+ mcos(omt))cos(wmet)

®,, IS The modulation frequency
o, is the carrier frequency
m is the modulation amplitude

Using the trig identity
cos(a.+B) = cos(a)cos(B)—sin(a)sin(p)

mV,

v(t) =V, cos(et)+ m;/o cos((g +op )+ V0 cos((@ — o )
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o AM Modulation

v(t) =V, (1+ mcos(mmt))cos(wmgt)

v(t) =V, cos(wgt)+ m;’o cos((eg + o )+

5(f)

m2/4

Fregq.
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SPALLATION

Longitudinal Motion

A single particle undergoes synchrotron oscillations ¢,

s
dp
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o Longitudinal Motion

The particle's longitudinal position can be described by an
azimuthal phase around the ring. The particle fraverses 2=
radians in one trip around the ring.

Ip (@)= 0dorey i 5(¢—2nm)

N=—00

This is a periodic function which can be expanded in a Fourier
series:

d <.
ip((P):T— Zejnq)
eV n=—x0
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EUROPEAN

o Longitudinal Motion

But the longitudinal phase is a function of time which includes
the time dependence of synchrotron oscillations

P = eyt + P SIN(Qt + a1

Where ¢, is the synchrotron oscillation amplitude,
Q, is the synchrotron frequency
a is The starting synchrotron phase

ip(t) = TL Zelnﬁ)revtejn(ps sin(Qgt+ag)
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o Bessel Function Magic

The complex exponential of a sine function can be "simplified”
by using Bessel func‘rions

estm Z‘] )ejmx

RN
0.5 >(_ -
R o <o

—_— 33
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o Longitudinal Spectrum

i Jo (n(Ps )Ejm(ls ej(”(ﬂrev +mMQg )t

T
I -- T(n)
1 -
| fs
0.75 1 | ) J2(nd;)
‘ J3(n¢s)
05 T } :| .
nfr‘ev
0.25 1 ,
0 1 T2
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333??"9'“ Frequency Modulation

Longitudinal oscillations has the same spectrum as frequency or
phase modulation (FM or PM)

W= O +Om Cos(a)st)

o4 is the modulation frequency
o, is the carrier frequency
o, 1S The modulation amplitude

do _
dt

Q)

¢ = ot + M sin(egt)
Ws
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Qiﬁﬁﬁ?“ Frequency Modulation

v(t) = cos| ogt +—™ sin(cgt)

Wg
o0
vit)= > 3, 20 | cos((wg + Mo 1t)
N=—0 Ws
v o)
| 14 om Jl(w_m j
S o
f,
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EUROPEAN

Q Sounce Multipole Distributions

The current for a single particle with synchrotron amplitude ¢,
and phase o, is:

ip((Ps O, t)= Ti Z ZJm(n(ps)ejmaSej(nmrev +mQg )t

rev N=—00 M=—00

What about a collection of particles in longitudinal phase space.

e

Each particle has a polar phase
space coordinates radius r,
angle o

A
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EUROPEAN

a Sounce Multipole Distributions

The density in phase space must be periodic in o with a period

of 2n
y(r,o)=1(r) chejk‘*
K=—00

The number of particles in phase space is given by:

Np =Cg jf(r)ZTcrdr
0

Also since y(r,a) must be real:

Ck = Cik
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aiﬁﬁﬁ?“ Multipole Distributions

The different values of k are multipoles. The multipoles spin
around the origin at a the synchrotron frequency.

Monopole:

Quadrupole: k = 2

- @
dipole: k=1 ..‘)A(p
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Multipole Distributions

Monopole:

00000

\

Dipole:
o l

VA

=

A

Time projection
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aiﬁﬁﬁ?“ Multipole Distributions

Monopole: k=0

Time projection
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23%%’?‘“ Multipole Distributions

The total current is found by integrating the contribution of
each particle in phase space.

o 27
= [rdr [y(r, a)ip(r, o, t)do
0) 0
( = (W®ypay Z ZFk )CkeJ (neorey +kOs )
N=—00 K=—0

Where F,(n) is a frequency form factor

()= [ r ) e

0
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EUROPEAN
SPALLATION

Multipole Distributions

Each synchrotron line in the spectrum corresponds to a
different multipole mode oscillation

Monopole

Dipole

Quadrapole

Introduction to RF - Part 3 - Beam Signals - McGinnis 44



