Network Analyzer Basics

Network Analyzer Basics

Network Analysis is NOT....

What Types of Devices are Tested?

	Couplers Bridges		Transceivers
	Combiners		Tuners
	Isolators		Converters
_	Circulators		
<u>o</u>	Attenuators		VCAs
at	Adapters		Amplifiers
gr	Opens, shorts, loads	Antennas	100-
Ite	Delay lines	Switches	VCOS
2	Cables	Switches	VIFS
	Transmission lines	Wuttplexers	Oscillators
	Waveguide	wixers	Modulators
	Resonators	Samplers Multipliers	VCAtten's
	Dielectrics	inditipliere	
NO	R, L, C's	Diodes	Transistors
Low	Dielectrics R, L, C's	Diodes	Transistors
	Passive D	evice type	Active

Lightwave Analogy to RF Energy

Why Do We Need to Test Components?

- Verify specifications of "building blocks" for more complex RF systems
- Ensure distortionless transmission of communications signals

- linear: constant amplitude, linear phase / constant group delay
- nonlinear: harmonics, intermodulation, compression, AMto-PM conversion
- Ensure good match when absorbing power (e.g., an antenna)

The Need for Both Magnitude and Phase

- 1. Complete characterization of linear networks
- 2. Complex impedance needed to design matching circuits

3. Complex values needed for device modeling High-frequency transistor model

Time

5. Vector-error correction

Agenda

Network Analyzer Basics

Transmission Line Basics

Low frequencies

- + - -
- wavelengths >> wire length
- current (I) travels down wires easily for efficient power transmission
- measured voltage and current not dependent on position along wire

High frequencies

- wavelength ≈ or << length of transmission
 medium
- need transmission lines for efficient power transmission
- matching to characteristic impedance (Zo) is very important for low reflection and maximum power transfer
- measured envelope voltage dependent on position along line Network Analyzer Basics
 Agilent Technologies

Transmission line Zo

- Zo determines relationship between voltage and current waves
- Zo is a function of physical dimensions and ε_r
- Zo is usually a real impedance (e.g. 50 or 75 ohms)

Power Transfer Efficiency

For complex impedances, maximum power transfer occurs when $Z_L = Z_{S^*}$ (conjugate match)

Maximum power is transferred when **RL** = **RS**

Network Analyzer Basics

Transmission Line Terminated with Zo

Transmission Line Terminated with 25 Ω

High-Frequency Device Characterization

Smith Chart Review

Linear Versus Nonlinear Behavior

Criteria for Distortionless Transmission Linear Networks

Magnitude Variation with Frequency

 $F(t) = \sin wt + 1/3 \sin 3wt + 1/5 \sin 5wt$

Phase Variation with Frequency

 $F(t) = \sin wt + 1/3 \sin 3wt + 1/5 \sin 5wt$

Deviation from Linear Phase

Use electrical delay to remove linear portion of phase response

Low resolution

High resolution

Network Analyzer Basics

Group Delay

- $\frac{-d \phi}{d \omega} = \frac{-1}{360^{\circ}} * \frac{d \phi}{d f}$ $\frac{\phi}{\phi} \text{ in radians}$ $\frac{\phi}{\omega} \text{ in radians/sec}$ $\frac{\phi}{f} \text{ in degrees}$ $f \text{ in Hertz } (\omega = 2 \pi f)$
- group-delay ripple indicates phase distortion
- average delay indicates electrical length of DUT
- aperture of measurement is very important

Network Analyzer Basics

Agilent Technologies

Characterizing Unknown Devices

Using parameters (H, Y, Z, S) to characterize devices:

- gives linear behavioral model of our device
- measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits)
- compute device parameters from measured data
- predict circuit performance under any source and load conditions

<u>H-parameters</u>	<u>Y-parameters</u>	<u>Z-parameters</u>
$V_1 = h_{11}I_1 + h_{12}V_2$	$I_1 = y_{11}V_1 + y_{12}V_2$	$V_1 = Z_{11}I_1 + Z_{12}I_2$
$I_2 = h_{21}I_1 + h_{22}V_2$	$I_2 = y_{21}V_1 + y_{22}V_2$	$V_2 = \mathbf{z}_{21} \mathbf{I}_1 + \mathbf{z}_{22} \mathbf{I}_2$
Y	$h_{11} = \frac{V_1}{I_1} \Big _{V_2=0} (requin)$ $h_{12} = \frac{V_1}{V_2} \Big _{I_1=0} (requin)$	res short circuit) res open circuit)
ork Analyzer Basics	Agilent Technolo	gies

Copyright

2000

Netwo

Why Use S-Parameters?

- relatively easy to **obtain** at high frequencies
 - measure voltage traveling waves with a vector network analyzer
 - don't need shorts/opens which can cause active devices to oscillate or self-destruct
- relate to familiar measurements (gain, loss, reflection coefficient ...)
- can cascade S-parameters of multiple devices to predict system performance
- can **compute** H, Y, or Z parameters from S-parameters if desired
- can easily import and use S-parameter files in our electronicsimulation tools
 S21
 Transmitted

Measuring S-Parameters

Equating S-Parameters with Common Measurement Terms

S11 = forward reflection coefficient (input match)
S22 = reverse reflection coefficient (output match)
S21 = forward transmission coefficient (gain or loss)
S12 = reverse transmission coefficient (isolation)

Remember, S-parameters are inherently complex, linear quantities -- however, we often express them in a log-magnitude format

Criteria for Distortionless Transmission Nonlinear Networks

Measuring Nonlinear Behavior

Most common measurements:

- using a *network analyzer* and power sweeps
 - gain compression
 - AM to PM conversion
- using a *spectrum analyzer* + source(s)
 - harmonics, particularly second and third
 - intermodulation products resulting from two or more RF

What is the Difference Between **Network** and **Spectrum** Analyzers?

- measure components, devices, circuits, sub-assemblies
- contain source and receiver
- display ratioed amplitude and phase (frequency or power sweeps)
- offer advanced error correction

Spectrum analyzers:

- measure signal amplitude characteristics carrier level, sidebands, harmonics...)
- can demodulate (& measure) complex signals
- are receivers only (single channel)
- can be used for scalar component test (no phase) with tracking gen. or ext. source(s)

Network Analyzer Basics

Agenda

Generalized Network Analyzer Block Diagram

Copyright

2000

Source

- Supplies stimulus for system
- Swept frequency or power
- Traditionally NAs used separate source
- Most Agilent analyzers sold today have *integrated*, *synthesized* sources

Directivity

Directivity is a measure of how well a coupler can separate signals moving in opposite directions

Agilent Technologies
Interaction of Directivity with the DUT (Without Error Correction)

Tuned Receiver

Narrowband Detection - Tuned Receiver

Comparison of Receiver Techniques

< -100 dBm Sensitivity

- high dynamic range
 - harmonic immunity

Dynamic range = maximum receiver power receiver noise floor

Network Analyzer Basics

-60 dBm Sensitivity

higher noise floor

• false responses

Agilent Technologies

Dynamic Range and Accuracy

Error Due to Interfering Signal

Dynamic range is very important for measurement accuracy!

T/R Versus S-Parameter Test Sets

Transmission/Reflection Test Set

- RF always comes out port 1
- port 2 is always receiver
- **response**, **one-port** cal available

S-Parameter Test Set

- RF comes out port 1 or port 2
- forward and reverse measurements
- two-port calibration possible

Processor / Display

• markers

- limit lines
- pass/fail indicators
- linear/log formats
- grid/polar/Smith charts

0000

0000

0

ò

Spectrum Analyzer / Tracking Generator

Key differences from network analyzer:

- one channel -- no ratioed or phase measurements
- More **expensive** than scalar NA (but better dynamic range)
- Only error correction available is normalization (and possibly open-short averaging)
- Poorer accuracy
- Small incremental cost if SA is required for other measurements

Network Analyzer Basics

Agilent Technologies

Agenda

Calibration Topics

Measurement Error Modeling

Systematic errors

- due to imperfections in the analyzer and test setup
- assumed to be time invariant (predictable)

Random errors

- **vary** with time in random fashion (unpredictable)
- main contributors: instrument noise, switch and connector repeatability

Drift errors

- due to system performance changing *after* a calibration has been done
- primarily caused by temperature variation

Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-

port devices

lent Technologies

Network Analyzer Basics

Types of Error Correction

• response (normalization)

- simple to perform
- only corrects for tracking errors
- stores reference trace in memory, then does data divided by memory

vector

- requires more standards
- requires an analyzer that can measure phase
- accounts for all major sources of systematic error

thru

Network Analyzer Basics

What is Vector-Error Correction?

- Process of characterizing systematic error terms
 - measure known standards
 - remove effects from subsequent measurements
- 1-port calibration (reflection measurements)
 - only 3 systematic error terms measured
 - directivity, source match, and reflection tracking
- Full 2-port calibration (reflection and transmission measurements)
 - 12 systematic error terms measured
 - usually requires 12 measurements on four known standards (SOLT)
- Standards defined in cal kit definition file
 - network analyzer contains standard cal kit definitions
 - CAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT USED!
 - User-built standards must be characterized and entered into user cal-kit

Reflection: One-Port Model

3 unknowns

- Assumes good termination at port two if testing two-port devices
- If using port 2 of NA and DUT reverse isolation is low (e.g., filter passband):
 - assumption of good termination is not valid
 - two-port error correction yields better results

Network Analyzer Basics

Agilent Technologies

Before and After One-Port Calibration

Two-Port Error Correction

- $\begin{array}{ll} E_D &= fwd \ directivity \\ E_S &= fwd \ source \ match \\ E_{RT} &= fwd \ reflection \ tracking \\ E_{D'} &= rev \ directivity \\ E_{S'} &= rev \ source \ match \end{array}$
- E_{RT'} = rev reflection tracking
- E_L = fwd load match E_{TT} = fwd transmission tracking E_X = fwd isolation $E_{L'}$ = rev load match $E_{TT'}$ = rev transmission tracking
- E_{X'} = rev isolation
- Each actual S-parameter is a function of all four measured S-parameters
- Analyzer must make forward and reverse sweep to update any one Sparameter
- Luckily, you don't need to know these equations to use network analyzers!!!

Reverse model

$$S_{11a} = \frac{(\frac{S_{11m} - E_D}{E_{RT}})(1 + \frac{S_{22m} - E_D'}{E_{RT'}}E_{S'}) - E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT'}})}{(1 + \frac{S_{11m} - E_D'}{E_{RT}}E_{S})(1 + \frac{S_{22m} - E_D'}{E_{RT'}}E_{S'}) - E_L'E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT'}})})$$

$$S_{21a} = \frac{(\frac{S_{21m} - E_X}{E_{TT}})(1 + \frac{S_{22m} - E_D'}{E_{RT}'}(E_S' - E_L))}{(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S)(1 + \frac{S_{22m} - E_D'}{E_{RT}'}E_S') - E_L'E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT}'})}$$

$$S_{12a} = \frac{(\frac{S_{12m} - E_X'}{E_{TT'}})(1 + \frac{S_{11m} - E_D}{E_{RT}}(E_S - E_L'))}{(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S)(1 + \frac{S_{22m} - E_D'}{E_{RT'}}E_S') - E_L'E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT'}})}$$

$$S_{22a} = \frac{(\frac{S_{22m} - E_D'}{E_{RL}})(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S) - E_L'(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT}})}{(1 + \frac{S_{11m} - E_D}{E_{RT}}E_S)(1 + \frac{S_{22m} - E_D'}{E_{RT}'}E_S') - E_L'E_L(\frac{S_{21m} - E_X}{E_{TT}})(\frac{S_{12m} - E_X'}{E_{TT}'})}$$

Network Analyzer Basics

Crosstalk: Signal Leakage Between Test Ports During Transmission

- Can be a problem with:
 - high-isolation devices (e.g., switch in open position)
 - high-dynamic range devices (some filter stopbands)
- Isolation calibration
 - adds noise to error model (measuring near noise floor of system)
 - only perform if really needed (use averaging if necessary)
 - if crosstalk is independent of DUT match, use two terminations
 - if dependent on DUT match, use DUT with termination
 - on output

Network Analyzer Basics

Copyright

2000

Errors and Calibration Standards

RESPONSE

UNCORRECTED FULL 2-PORT

- Convenient
- Generally not
 accurate
- No errors removed

- Easy to perform
- Use when highest accuracy is not required
- Removes frequency response error

ENHANCED-RESPONSE

- Combines response and 1-port
- Corrects source match for transmission measurements

- For reflection measurements
- Need good termination for high accuracy with twoport devices
- Removes these errors: Directivity Source match Reflection tracking

SHORT

1-PORT

SHORT

- Highest accuracy
- Removes these errors:
 - Directivity
 - Source, load
 - match
 - Reflection tracking
 - Transmission
 - tracking
 - Crosstalk

Calibration Summary

Reflection Example Using a One-Port Cal

Transmission Example Using Response Cal

RL = 14 dB (.200)

Thru calibration (normalization) builds error into measurement due to source and load match interaction

Network Analyzer Basics

Filter Measurement with Response Cal

Measuring Amplifiers with a Response Cal

Filter Measurements using the **Enhanced Response** Calibration **Calibration Uncertainty** Effective source match = 35 dB! $=(1 \pm \rho_{\rm S} \rho_{\rm L})$ $= (1 \pm (.0178)(.126))$ Load match = $= \pm .02 \, dB$ DUT Source 18 dB (.126) 1 dB loss (.891) match = 3516 dB RL (.158) dB (.0178) Measurement uncertainty $= 1 \pm (.020 + .0018 + .0028)$ (.126)(.158) = .020 $= 1 \pm .0246$ = + 0.211 dB (.126)(.891)(.0178)(.891) = .0018- 0.216 dB (.158)(.0178) = .0028 Total measurement uncertainty: $0.22 + .02 = \pm 0.24 \text{ dB}$ **Agilent Technologies** Copyright Network Analyzer Basics 2000

Using the *Enhanced Response* Calibration Plus an Attenuator

Response versus Two-Port Calibration

CH1 S21&M log MAG 1 dB/ REF 0 dB CH2 MEM 1 dB/ log MAG REF 0 dB Ł۹ Cor After two-port calibration After response calibration \sim Uncorrected Cor ົ x2 START 2 000.000 MHz STOP 6 000.000 MHz **Agilent Technologies** Copyright **Network Analyzer Basics** 2000

Measuring filter insertion loss

ECal: Electronic Calibration (85060/90 series)

- · Variety of modules cover 30 kHz to 26.5 GHz
- . Six connector types available (50 Ω and 75 $\Omega)$
- · Single-connection
 - reduces calibration time
 - makes calibrations easy to perform
 - minimizes wear on cables and standards
 - eliminates operator errors
- · Highly repeatable temperature-compensated terminations provide excellent accuracy

Calibrating Non-Insertable Devices

When doing a through cal, normally test ports mate directly

- cables can be connected directly without an adapter
- result is a zero-length through

What is an insertable device?

- has same type of connector, but different sex on each port
- has same type of sexless connector on each port (e.g. APC-7)

What is a non-insertable device?

- one that cannot be inserted in place of a zero-length through
- has same connectors on each port (type and sex)
- has different type of connector on each port (e.g., waveguide on one port, coaxial on the other)

What calibration choices do I have for non-insertable devices?

- use an uncharacterized through adapter
- use a *characterized* through adapter (modify cal-kit definition)
- swap equal adapters
- adapter removal Network Analyzer Basics

Swap Equal Adapters Method

Accuracy depends on how well the adapters are matched - loss, electrical length, match and impedance should all be equal

1. Transmission cal using adapter A.

2. Reflection cal using adapter B.

3. Measure DUT using adapter B.

Agilent Technologies

Adapter Removal Calibration

- Calibration is very accurate and traceable
- In firmware of 8753, 8720 and 8510 series
- Also accomplished with ECal modules (85060/90) Port 1
- Uses adapter with same connectors as DUT
- Must specify electrical length of adapter to within 1/4 wavelength of highest frequency (to avoid phase ambiguity)

- 1. Perform 2-port cal with adapter on port 2. Save in cal set 1.
- Perform 2-port cal with adapter on port 1. Save in cal set 2.
- 3. Use ADAPTER REMOVAL to generate new cal set.
- 4. Measure DUT without cal adapter.

DUT [

Copyright

2000

Thru-Reflect-Line (TRL) Calibration

We know about Short-Open-Load-Thru (SOLT) calibration... What is TRL?

- A two-port calibration technique
- Good for noncoaxial environments (waveguide, fixtures, wafer probing)
- Uses the same 12-term error model as the more common SOLT cal
- Uses practical calibration standards that are easily fabricated and characterized
- Two variations: TRL (requires 4 receivers) and TRL* (only three receivers needed)

TRL was developed for non-coaxial microwave measurements

• Other variations: Line-Reflect-Match (LRM), Thru-Reflect-Match (TRM), plus many others

Agenda

Optimize Filter Measurements with Swept-List Mode Segment 3: 29 ms

Transfer function Schottky Signals Narrow Band

Network Analyzer Basics

1-12 75

Transfer function Schottky Signals Wide Band

Network Analyzer Basics

1-12 76

Power Sweeps - Compression

Power Sweep - Gain Compression

1 dB compression:

input power resulting in 1 dB *drop* in gain

Network Analyzer Basics

Copyright 2000

AM to PM Conversion

Measure of phase deviation caused by amplitude variations

Measuring AM to PM Conversion

- Use transmission setup with a power sweep
- Display phase of S21

Agenda

Time-Domain Reflectometry (TDR)

- What is TDR?
 - time-domain reflectometry
 - analyze impedance versus time
 - distinguish between inductive and capacitive transitions
- With gating:
 - analyze transitions

2000

Network Analyzer Basics

impedance

TDR Basics Using a Network Analyzer

- start with broadband frequency sweep (often requires microwave VNA)
- use inverse-Fourier transform to compute time-domain
- resolution inversely proportionate to frequency span

Time-Domain Gating

- TDR and gating can **remove** undesired reflections (a form of error correction)
- Only useful for **broadband** devices (a load or thru for example)
- Define gate to only include DUT

2000

Network Analyzer Basics

Ten Steps for Performing TDR

- 1. Set up desired frequency range (need wide span for good spatial resolution)
- 2. Under SYSTEM, transform menu, press "set freq low pass"
- 3. Perform one- or two-port calibration
- 4. Select S11 measurement *
- 5. Turn on transform (low pass step) *
- 6. Set format to real *
- 7. Adjust transform window to trade off rise time with ringing and overshoot *
- 8. Adjust start and stop times if desired
- 9. For gating:
 - set start and stop frequencies for gate
 - turn gating on *
 - adjust gate shape to trade off resolution with ripple *
- 10. To display gated response in frequency domain
 - turn transform off (leave gating on) *
 - change format to log-magnitude *
- * If using two channels (even if coupled), these parameters must be set independently for second channel

Time-Domain Transmission

Time-Domain Filter Tuning

- Deterministic method used for tuning cavity-resonator filters
- Traditional frequencydomain tuning is very difficult:
 - lots of training needed
 - may take 20 to 90 minutes to tune a single filter
- Need VNA with fast sweep speeds and fast timedomain processing

Agilent Technologies

Copyright 2000

Filter Reflection in Time Domain

- Set analyzer's center frequency
 = center frequency of the filter
- Measure S_{11} or S_{22} in the time domain
- Nulls in the time-domain response correspond to individual resonators in filter

Tuning Resonator #3

- Easier to identify mistuned resonator in time-domain: null #3 is missing
- Hard to tell which resonator is mistuned from frequencydomain response
- Adjust resonators by minimizing null
- Adjust coupling apertures using the peaks in-between the dips

Frequency-Translating Devices

Directional Coupler Directivity

One Method of Measuring Coupler Directivity

Directional Bridge

- 50-ohm load at test port balances the bridge -- detector reads zero
- Non-50-ohm load imbalances bridge
- Measuring magnitude and phase of imbalance gives complex impedance
- "Directivity" is difference between maximum and minimum balance

NA Hardware: Front Ends, Mixers Versus Samplers

2000

Sampler-based front end

Network Analyzer Basics

Three Versus Four-Receiver Analyzers

Source

П

Port 1

3 receivers

- more economical
- TRL*, LRM* cals only
- includes:
 - **8753ES**
 - 8720ES (standard)

Agilent Technologies

Port 2

Transfer switch

4 receivers

• includes:

8510C

• more expensive

• true TRL, LRM cals

8720ES (option 400)

Why Are Four Receivers Better Than Three?

8720ES Option 400 adds fourth sampler, allowing full TRL calibration

• TRL*

- assumes the source and load match of a test port are equal (port symmetry between forward and reverse measurements)
- this is only a fair assumption for three-receiver network analyzers
- TRL
 - ∎ four receivers are necessary to make the required measurements
 - TRL and TRL* use identical calibration standards
- In noncoaxial applications, TRL achieves better source and load match correction than TRL*
- What about coaxial applications?
 - SOLT is usually the preferred calibration method
 - coaxial TRL can be more accurate than SOLT, but not commonly used

Network Analyzer Basics

Copyright 2000

Challenge Quiz

1. Can filters cause distortion in communications systems?

- A. Yes, due to impairment of phase and magnitude response
- B. Yes, due to nonlinear components such as ferrite inductors
- C. No, only active devices can cause distortion
- D. No, filters only cause linear phase shifts
- E. Both A and B above

2. Which statement about transmission lines is false?

- A. Useful for efficient transmission of RF power
- B. Requires termination in characteristic impedance for low VSWR
- C. Envelope voltage of RF signal is independent of position along line
- D. Used when wavelength of signal is small compared to length of line
- E. Can be realized in a variety of forms such as coaxial, waveguide, microstrip

3. Which statement about narrowband detection is false?

- A. Is generally the cheapest way to detect microwave signals
- B. Provides much greater dynamic range than diode detection
- C. Uses variable-bandwidth IF filters to set analyzer noise floor
- D. Provides rejection of harmonic and spurious signals
- E. Uses mixers or samplers as downconverters

Challenge Quiz (continued)

4. Maximum dynamic range with narrowband detection is defined as:

- A. Maximum receiver input power minus the stopband of the device under test
- B. Maximum receiver input power minus the receiver's noise floor
- C. Detector 1-dB-compression point minus the harmonic level of the source
- D. Receiver damage level plus the maximum source output power
- E. Maximum source output power minus the receiver's noise floor

5. With a T/R analyzer, the following error terms can be corrected:

- A. Source match, load match, transmission tracking
- B. Load match, reflection tracking, transmission tracking
- C. Source match, reflection tracking, transmission tracking
- D. Directivity, source match, load match
- E. Directivity, reflection tracking, load match

6. Calibration(s) can remove which of the following types of measurement error?

- A. Systematic and drift
- B. Systematic and random
- C. Random and drift
- D. Repeatability and systematic
- E. Repeatability and drift

Challenge Quiz (continued)

7. Which statement about TRL calibration is false?

- A. Is a type of two-port error correction
- B. Uses easily fabricated and characterized standards
- C. Most commonly used in noncoaxial environments
- D. Is not available on the 8720ES family of microwave network analyzers
- E. Has a special version for three-sampler network analyzers

8. For which component is it hardest to get accurate transmission and reflection measurements when using a T/R network analyzer?

- A. Amplifiers because output power causes receiver compression
- B. Cables because load match cannot be corrected
- C. Filter stopbands because of lack of dynamic range
- D. Mixers because of lack of broadband detectors
- E. Attenuators because source match cannot be corrected

9. Power sweeps are good for which measurements?

- A. Gain compression
- B. AM to PM conversion
- C. Saturated output power
- D. Power linearity
- E. All of the above

Answers to Challenge Quiz

1. E 2. C 3. A 4. B 5. C 6. A 7. D 8. B 9. E

